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1. Introduction

A black hole radiates thermal radiation with the Hawking temperature determined by the

surface gravity at the event horizon [1]. The surface gravity is the acceleration measured

at the spatial infinity that a stationary particle should undergo to withstand the gravity

at the event horizon. The accelerated particle detects a thermal spectrum with the Unruh

temperature out of the Minkowski vacuum [2]. The particle accelerated with the surface

gravity would see the vacuum containing a thermal flux with the Hawking temperature.

The thermal spectrum seen by the accelerated particle can also be understood by the

interpretation that the Minkowski vacuum is restricted to a causally connected Rindler

wedge due to presence of horizons just as the horizon of a black hole prevents the outer

region from being causally connected with the region inside the horizon [3].

Recently Parikh and Wilczek reinterpreted the Hawking radiation as quantum tun-

neling [4]. Their observation is that as a particle has a negative energy just inside and a

positive energy just outside the horizon, a virtual pair created near the horizon can ma-

terialize into a real pair with zero total energy, one particle on each side of the horizon.

Indeed, the Hawking radiation is such particle production and can be interpreted as tun-

neling through the horizon. The tunneling process for particle production by geometry of

a black hole is analogous to the Schwinger mechanism for pair production by an external

electric field [5]. Indeed, charged pairs can be materialized from virtual pairs when the
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potential energy across the Compton wavelength is comparable to the rest mass of the

particle.

One approach to the tunneling interpretation of Hawking radiation is to study the

tunneling motion of the s-wave of emitted radiations, which has been applied to various

black holes [6 – 28] (for a review, see [17]). Another approach is to study quantum fields

tunneling through the horizon in a black hole spacetime [29]. In the latter a conventional

wisdom is to find the imaginary part of the Hamilton-Jacobi action, twice of which leads

to a Boltzmann factor [29 – 41]. However, the emission rate by tunneling depends on the

coordinate system. The radial coordinate, for instance, yields a temperature twice of the

Hawking temperature. Some proposals were advanced to remedy the ambiguity. In ref. [29],

the ratio of emission to absorption was used to get the correct Boltzmann factor. Also

the isotropic coordinate and the proper distance from the horizon was used [35, 36], and

different coordinates were tested [31]. In refs. [37] and [38] the emission rate was suggested

as a contour integral, which makes the rate invariant under canonical transformations.

The purpose of this paper is to substantiate the tunneling idea within the context

of quantum field theory in the black hole spacetime. The analogy between the Hawking

radiation and the Schwinger mechanism has been well exploited [42 – 45]. As the Schwinger

mechanism can be interpreted as the Unruh effect seen by a charged particle accelerated

by the electric field, we may use the Rindler coordinate for the accelerated particle. In

addition, as the Hawking radiation can be interpreted as the Unruh effect with the surface

gravity, the Rindler coordinate may be used to describe the tunneling process of quantum

fields. In the tunneling interpretation a local Rindler frame was first introduced in ref. [34],

the Unruh effect was calculated from tunneling [39], and the discrepancy of the Hawking

temperature from tunneling from the left to the right wedge and from the right to the

future wedge in the full Rindler spacetime was discussed [40]. In the previous paper [41],

along the lines of the Schwinger mechanism, the Rindler coordinate was used to get the

correct Boltzmann factor for a charged black hole and a BTZ black hole.

Another reason for using the Rindler coordinate is that quantum tunneling of fields or

particles occurs through the horizon and locally the Rindler coordinate near the horizon

is an accelerated frame for the Minkowski spacetime when the acceleration is the surface

gravity. Further the field equation in the Rindler spacetime has many properties in common

with the equation minimally coupled with the gauge field of electric field for the Schwinger

mechanism. All these imply that the Rindler coordinate is an appropriate coordinate to

make full use of the analogy between the Schwinger mechanism and the Hawking radiation.

We show that in the Rindler spacetime the tunneling rate of a quantum field from a causally

disconnected region through the horizon explains indeed the thermal spectrum with the

Unruh temperature. In fact, the tunneling rate in the Rindler spacetime takes the same

form as the rate for tunneling of virtual pairs in the Schwinger mechanism.

We represent a black hole spacetime in the Rindler coordinate and then calculate

the emission rate by tunneling of quantum fields through the horizon. The emission rate

found in analogy with the Schwinger mechanism is given by a contour integral in the

Rindler spacetime. As the contour integral is independent of coordinate transformations,

the emission rate is invariant under canonical transformations. Also as quantum physics
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just inside and outside horizons can be properly described by Rindler coordinates, the

Rindler spacetime seems to be a natural coordinate that avoids the ambiguity from the

modification of contours in changing coordinates. We get the correct Boltzmann factor

for non-extremal black holes such as a Schwarzschild black hole, a non-extremal Reissner-

Nordström black hole, a charged Kerr black hole, a de Sitter space, and a Schwarzschild-

anti de Sitter black hole. However, our method cannot be applied to extremal black holes

because there are no Rindler coordinates locally near horizons.

The organization of this paper is as follows. In section 2 we discuss some ambiguity of

the Hawking radiation as tunneling. In section 3 we derive the emission rate by tunneling

in the Rindler spacetime and then compare it with the Schwinger mechanism. In section 4

we use the Rindler coordinate to derive the emission rate within quantum field theory and

interpret the Hawking radiation as quantum tunneling for a Schwarzschild black hole, a

non-extremal Reissner-Nordström black hole, a charged Kerr black hole, a de Sitter space,

and a Schwarzschild-anti de Sitter black hole. In section 5 we compare the emission rate

in the Rindler coordinate with the isotropic coordinate and the proper distance from the

horizon. Finally we conclude in section 6.

2. Hawking radiation as tunneling

In this section we briefly review tunneling of quantum fields through the horizon in a black

hole spacetime and discuss the related problems. It was pointed out that this approach

to the tunneling interpretation of Hawking radiation has ambiguities such coordinate-

dependence of the Hawking temperature and non-invariance of the action under canonical

transformations [37, 38].

For the sake of simplicity we consider a stationary black hole with the metric of the

form

ds2 = −f(r)dt2 +
dr2

g(r)
+ hijdxidxj , (2.1)

where hijdxidxj is a two-dimensional metric and, for instance, becomes r2dΩ2 for a spher-

ically symmetric black hole. The event horizon rH is located at f(rH) = g(rH) = 0, near

which f(r) = f ′(rH)(r − rH) and g(r) = g′(rH)(r − rH) up to the leading term. The

exceptional case of extremal black holes will be treated separately. As we are mostly con-

cerned about the s-wave (spherically symmetric) of a massive scalar field in the black hole

spacetime, we shall further restrict our investigation to the two-dimensional sector of (t, r).

The equation of the massive scalar takes the form [in units with ~ = c = 1]

[

1√
fg

∂2

∂t2
− ∂

∂r

(

√

fg
∂

∂r

)

+ m2

]

Φ(t, r) = 0. (2.2)

The action from the solution, Φ(t, r) = eiS±(t,r), with

S±(t, r) = −ωt ±
∫

p(r)dr, (2.3)
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satisfies, at the leading order, the Hamilton-Jacobi equation

(

∂S±

∂r

)2

− ω2

fg
+

m2

√
fg

= 0. (2.4)

Here ±p(r) = ∂S±/∂r is the radial momentum of an outgoing or ingoing wave, respectively.

The action is then given by

S±(t, r) = −ωt ±
∫ r

r0

dr√
fg

√

ω2 − m2
√

fg. (2.5)

There is an ultraviolet divergence from the simple pole at the event horizon, since fg =

f ′(rH)g′(rH)(r − rH)2, which contributes to an imaginary part.

To describe waves tunneling through the event horizon, r0 is located inside the horizon.

The imaginary part may be obtained by taking a semi-circle under the horizon rH as

ImS± = ± πω
√

f ′(rH)g′(rH)
. (2.6)

Then the amplitude square, |Φ|2 = e−2ImS+ , leads to the tunneling (emission) rate for the

outgoing wave through the horizon:

P = e−2ImS+ = e−ω/T , (2.7)

where

T =

√

f ′(rH)g′(rH)

2π
. (2.8)

A few remarks are in order. First, note that the temperature (2.8) is the twice of the

Hawking temperature

TH =

√

f ′(rH)g′(rH)

4π
. (2.9)

Several proposals were advanced to remedy the ambiguity of the temperature. In ref. [29],

by analogy with a black body the emission rate is defined as the ratio of the amplitude

square of the outgoing wave to that of the ingoing wave, which is given by S−,

Pout

Pin
= e−2Im(S+−S−) = e−ω/TH . (2.10)

On the other hand, the isotropic coordinate and the proper distance along the radial

direction are also employed to get the correct Hawking temperature in refs. [35, 36]. In

fact, the ambiguity of the temperature is originated from the coordinate used to calculate

the emission rate. Another ambiguity is that the action (2.5), in particular, the imaginary

part is not invariant under canonical transformations [37, 38].
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3. Tunneling in the Rindler spacetime

A Rindler spacetime is the spacetime covered by all time-like congruences of an accelerated

particle. The Rindler spacetime has two horizons that separate the Minkowski spacetime

into the right (R), the left (L), the past (P) and the future (F) wedges. The wedge (R)

is causally disconnected from the wedge (L) and a timelike Killing vector normal to the

spacelike Cauchy surface that covers both (R) and (L) defines a complete set of quantum

fields. The thermal nature of Unruh effect comes from the fact that the physically accessible

region (R) for an accelerated particle is causally disconnected with the other region (L)

and the Minkowski vacuum defined in the union of (R) and (L) looks like a mixed state for

the particle [3]. In this paper, following the arguments in refs. [2] and [3], we shall consider

quantum tunneling from (L) to (R) wedge. However, in ref. [40] it was shown that the

result of tunneling from (R) to (F) would differ from the Hawking temperature by a factor

of two.

In two dimensions the right wedge (R) of the Rindler spacetime has the coordinate

t = ρR sinh(aτ),

z = ρR cosh(aτ), (3.1)

with ρR ≥ 0, and the left wedge (L) has

t = ρL sinh(aτ),

z = ρL cosh(aτ), (3.2)

with ρL ≤ 0. Here a is the acceleration of the particle. In both wedges the spacetime has

the metric

ds2 = −(aρ)2dτ2 + dρ2. (3.3)

The right wedge is causally disconnected from the left wedge by horizons, t = ±z, which

correspond to ρ = 0. The accelerated particle would detect a thermal spectrum with the

so-called Unruh temperature, TU = a/(2π), from the Minkowski vacuum [2]. From a view

point of causality, the particle operators for the accelerated particle in (R) are expressed

in terms of Minkowski operators in (R) and (L) through a Bogoliubov transformation, so

the vacuum for the particle looks like a thermal vacuum in thermo-field dynamics [3].

However, quantum mechanically speaking, fields or particles can cross horizons with a

certain probability. To cover both (R) and (L), we analytically continue the coordinate

ρL = ρReiπ. (3.4)

The massive scalar field in (R) and (L) obeys the equation

[

− 1

(aρ)2
∂2

∂τ2
+

∂2

∂ρ2
− m2

]

Φ(τ, ρ) = 0, (3.5)
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and the spatial part, Φ = e−iωτϕ(ρ), satisfies the equation

[

∂2

∂ρ2
+

ω2

(aρ)2
− m2

]

ϕ(ρ) = 0. (3.6)

Note that eq. (3.6) is oscillatory for |ρ| ≤ ρc = ω/(ma) and exponential otherwise. In

quantum mechanics, it is a one-dimensional problem with the energy −m2 and with the

negative singular potential −(ω/aρ)2.

For a tunneling wave function crossing ρ = 0, we may use the solution in (L)

ϕL(ρ) =
√

ρJiν(imρ), (3.7)

where Jiν is the Bessel function with a complex order

ν =

√

ω2

a2
− 1

4
. (3.8)

The wave function in (R) tunneled from (L) may be found by analytically continuing the

solution (3.7) via (3.4), which becomes

ϕR(ρ) = (ρReiπ)1/2Jiν(imρReiπ)

= e−νπeiπ/2(ρR)1/2Jiν(imρR), (3.9)

where the relation Jα(zeinπ) = einαπJν(z) for an integer n is used. Indeed, the solution (3.9)

has an outgoing flux near the horizon in (R). Therefore we find the tunneling (emission)

rate as the ratio of the amplitude square of the tunneled wave function in (R) from (L) to

the amplitude square of the outgoing wave function (ρR)1/2Jiν(imρR) with a given flux in

(R):

P = e−2νπ ≈ e−2πω/a. (3.10)

The tunneling rate is nothing but the Boltzmann factor with the Unruh temperature TU .

We further show that the tunneling rate, P = e−Sω , can also be obtained from the action,

ϕ = eiS(ρ), where

Sω = 2 ImS = −i

∮

√

ω2

(aρ)2
− m2dρ =

2πω

a
, (3.11)

with a contour enclosing ρ = 0.

We now compare the tunneling (emission) rate (3.11) in the Rindler coordinate with the

pair production rate by an electric field in the Schwinger mechanism. In two dimensions

the scalar field equation for charge e (e > 0) and mass m minimally coupled with the

Coulomb gauge, Aµ = (−Ex, 0), takes the form

[

(

∂

∂t
− ieEx

)2

− ∂2

∂x2
+ m2

]

Φ = 0. (3.12)
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The spatial part, Φ = e−iωtϕ(x), satisfies

[

∂2

∂x2
+ (ω + eEx)2 − m2

]

ϕ(x) = 0. (3.13)

In quantum mechanics, eq. (3.13) is a tunneling problem with energy −m2 under the

inverted harmonic potential. In refs. [46 – 48], the tunneling rate

P = e−S (3.14)

is given by the WKB instanton action

S = −i

∮

√

(ω + eEx)2 − m2dx =
πm2

eE
. (3.15)

Here the contour integral is taken outside a contour in the complex x-plane.

We notice a similarity that the tunneling rate is given by the same formula

P = e−i
H

p, (3.16)

where for the Rindler case p is

p(ρ) =

√

ω2

(aρ)2
− m2, (3.17)

while for the Schwinger mechanism

p(x) =
√

(ω + eEx)2 − m2. (3.18)

The contours include segments of real axis where p is real. However, for the Schwinger

mechanism the contour integral is taken outside a contour that excludes a branch cut

connecting two roots, x± = (−ω±m)/(eE), while for the Rindler case the contour is taken

inside a contour that excludes branch cuts from a root ω/(am) to the positive infinity and

from another root −ω/(am) to the negative infinity.

4. Tunneling rate of black holes in the Rindler coordinate

From the argument in section 3 we shall use the Rindler coordinate of a black hole spacetime

to calculate the tunneling rate. The spacetime region of the metric (2.1) near the event

horizon may be locally approximated by a Rindler spacetime

ds2 = −(κρ)2dt2 + dρ2, (4.1)

where the Rindler coordinate is used

κρ =
√

f,
dr

dρ
=

√
g. (4.2)

– 7 –
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From eq. (4.2) we find the surface gravity

κ =
f ′(rH)

2

√

g(rH)

f(rH)
=

√

f ′(rH)g′(rH)

2
. (4.3)

The last equality holds only for non-extremal black holes. In the Rindler coordinate the

instanton action is the contour integral in the complex ρ-plane

Sω = −i

∮

√

ω2

f(ρ)
− m2dρ =

2πω

κ
. (4.4)

Here the contribution comes from the simple pole at ρ = 0, the event horizon. This leads

to the emission rate for the Hawking radiation

P (ω) = e−Sω = e−ω/TH , TH =
κ

2π
. (4.5)

As a by-product the contour integral is invariant under canonical transformations [38].

In the below we apply the emission rate in the Rindler coordinate to a Schwarzschild

black hole, a non-extremal Reissner-Nordström black hole, a charged Kerr black hole, a de

Sitter space and a Schwarzschild-anti de Sitter black hole.

4.1 Schwarzschild black hole

The Schwarzschild black hole with

f = g = 1 − 2M

r
=

r − rH

r
, (rH = 2M) (4.6)

has the metric

ds2 = −(κρ)2dt2 +
(2rHκ)2

(1 − (κρ)2)4
dρ2, (4.7)

in the Rindler coordinate

f = g = (κρ)2. (4.8)

Near the event horizon, ρ ≈ 0 (r ≈ rH), the spacetime (4.7) approximately becomes a

Rindler one with κ = 1/(2rH ) = 1/(4M). Further, if the Euclidean time τ = it has a

periodicity of τ = 2π/κ, it is the Euclidean space without a deficit angle. In fact, κ is the

surface gravity

κ =
f ′(rH)

2
=

1

4M
, (4.9)

and leads to the emission rate (4.5) with the Hawking temperature

TH =
1

8πM
. (4.10)
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4.2 Reissner-Nordström black hole

The non-extremal Reissner-Nordström black hole with

f = g = 1 − 2M

r
+

Q2

r2
=

(r − r+)(r − r−)

r2
, (4.11)

has the event horizon, r+ = M +
√

M2 − Q2, and the inner horizon, r− = M−
√

M2 − Q2.

With the coordinate

f = g =
r2
+

r2
(κρ)2, (4.12)

the metric becomes

ds2 = − (2r+)2
(

r+ + r− +
√

(r+ − r−)2 + 4(κr+ρ)2
)2 (κρ)2dt2

+
(κr+)2

(

r+ + r− +
√

(r+ − r−)2 + 4(κr+ρ)2
)2

(r+ − r−)2 + 4(κr+ρ)2
dρ2. (4.13)

Near the event horizon, ρ ≈ 0, the spacetime (4.13) approximately becomes a Rindler one

provided that κ = (r+ − r−)/(2r2
+), which is the surface gravity at the event horizon r+,

κ =
f ′(r+)

2
=

r+ − r−
2r2

+

. (4.14)

The emission rate (4.5) is thus valid for non-extremal Reissner-Nordström black holes.

A caveat is that our emission rate relies on the Rindler coordinate. However, the

extremal Reissner-Nordström black hole with Q = M

ds2 = −
(

1 − M

r

)2

dt2 +
dr2

(

1 − M
r

)2 (4.15)

cannot be approximated by the Rindler spacetime, since with r = M + cρ for any c, the

metric has the form

ds2 = − (cρ)2

(M + cρ)2
dt2 +

(M + cρ)2

ρ2
dρ2. (4.16)

Without the Rindler coordinate the instanton action (4.4) cannot be applied to extremal

black holes.

4.3 Charged Kerr black hole

The charged Kerr black hole has the metric

ds2 = −fdt2 +
dr2

g
+ k(dφ − ωdt)2 + Σdθ2, (4.17)

– 9 –
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where

f =
∆Σ

(r2 + a2)2 − ∆a2 sin2 θ
,

g =
∆

Σ
,

k =
(r2 + a2)2 − ∆a2 sin2 θ

Σ
,

ω =
a sin2 θ(r2 + a2 − ∆)

(r2 + a2)2 − ∆a2 sin2 θ
, (4.18)

where

∆ = r2 − 2Mr + a2 + Q2,

Σ = r2 + a2 cos2 θ. (4.19)

The event horizon is located at r+ = M +
√

M2 − a2 − Q2 and the inner horizon at

r− = M −
√

M2 − a2 − Q2. With the coordinate

f = (κx)2, (4.20)

the metric near the event horizon approximately takes the form

ds2 = −(κρ)2dt2 +
4κ2(r2

+ + a2)2

(r+ − r−)2
dρ2. (4.21)

With the surface gravity

κ =
r+ − r−

2(r2
+ + a2)

=

√

f ′(r+)g′(r+)

2
, (4.22)

the charged Kerr black hole can be written in the Rindler coordinate near the event horizon

and has the emission rate (4.5).

4.4 De Sitter space

The de Sitter spacetime with

f = g = 1 − r2

l2
= (κρ)2 (4.23)

has the event horizon at rH = l. In the Rindler coordinate the de Sitter space becomes

ds2 = −(κρ)2dt2 +
(lκ)2

1 − (κρ)2
dρ2, (4.24)

and locally a Rindler spacetime when κ = 1/l, which is the surface gravity. Thus the

emission rate (4.5) is also valid for the de Sitter with the Hawking temperature

TH =
1

2πl
. (4.25)

– 10 –
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4.5 Schwarzschild-anti de Sitter black hole

The Schwarzschild-anti de Sitter black hole with

f = g = 1 − 2M

r
+

r2

l2
(4.26)

has the event horizon at

rH = l





(

M

l
+

√

1

27
+ (M/l)2

)1/3

+

(

M

l
−

√

1

27
+ (M/l)2

)1/3


 . (4.27)

Near the event horizon, choosing the coordinate

f = g ≈ (r − rH) × 2

(

(rH/l)2 + Ml/r2
H

rH

)

= (κρ)2 (4.28)

we may write the metric approximately as

ds2 ≈ −(κρ)2 +
(lκ)2

(rH/2 + Ml/r2
H)2

dρ2. (4.29)

With the surface gravity

κ =
1

l

(

rH

l
+

Ml

r2
H

)

, (4.30)

the metric becomes a Rindler spacetime. Thus the emission rate (4.5) is also valid for the

Schwarzschild-anti de Sitter black hole.

5. Connection with other coordinates

In this section we discuss why the isotropic coordinate and the proper distance can recover

the correct Hawking temperature and the Boltzmann factor [35, 36]. The spherically

symmetric metric in eq. (2.1) can be written in the isotropic coordinate as

ds2 = −f(ζ)dt2 + k(ζ)(dζ2 + ζ2dΩ2), (5.1)

where
∫

dζ

ζ
=

∫

dr

r
√

g(r)
. (5.2)

For instance, the Schwarzschild black hole has the isotropic coordinate

ds2 = −
(

1 − 2M/ζ

1 + 2M/ζ

)2

dt2 +

(

1 + 2M/ζ

2

)4

(dζ2 + ζ2dΩ2), (5.3)

where r = ζ(1 + 2M/ζ)2/4. The event horizon is located at ζH = rH = 2M . The metric

near the event horizon is approximately given by

ds2 ≈ −(ζ − 2M)2

(4M)2
dt2 + (dζ2 + ζ2dΩ2). (5.4)

– 11 –
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Setting (ζ − 2M)/4M = κρ and κ = 1/4M , the Schwarzschild black hole metric becomes

a Rindler one. This is the reason why the isotropic coordinate leads to the correct result.

Another coordinate is the proper distance

σ =

∫

dr√
g
, (5.5)

and its metric metric

ds2 = −f(σ)dt2 + dσ2. (5.6)

For non-extremal black holes, the leading terms are

f = f ′(rH)(r − rH), g = g′(rH)(r − rH). (5.7)

Now the proper distance from the event horizon

σ =
2

√

g′(rH)

√
r − rH , (5.8)

leads to

f = f ′(rH)

(

√

g′(rH)

2

)2

σ2 = (κσ)2, (5.9)

with the surface gravity (4.3). Therefore the proper distance method gives the same result

as the Rindler coordinate.

6. Conclusion

We have studied the tunneling solution of a scalar field in the Rindler coordinate of a black

hole spacetime. The tunneling solution in the black hole coordinate leads to a Boltzmann

factor with a temperature twice of the Hawking temperature. However, using the analogy

between the Schwinger mechanism in the Minkowski spacetime and the tunneling process in

the Rindler spacetime of a black hole, we formulate the emission rate as a contour integral

in both cases. This formulation avoids the coordinate-dependence of the emission rate in

that it does not require the black hole coordinates first to express the emission rate and

then to transform it to the Rindler coordinates. Only the surface gravity and local Rindler

coordinates near horizons are needed for the calculation. In fact, our tunneling (emission)

rate yields a Boltzmann factor with the correct Hawking temperature for non-extremal

black holes such as a Schwarzschild black hole, a Reissner-Nordström black hole, a charged

Kerr black hole, a de Sitter space, and a Schwarzschild-anti de Sitter black hole.

One of the reasons for using the Rindler coordinate near the event horizon is that the

tunneling process of fields in the Rindler spacetime is analogous to the Schwinger process for

pair production by an electric field. Also the field equation in the Rindler spacetime is quite

similar to the equation minimally coupled with the gauge field of electric field. Indeed, the

tunneling (emission) rate given by a contour integral takes the same form in the Rindler
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coordinate of black holes for tunneling process and in the Minkowski for the Schwinger

mechanism. Thus the tunneling idea of fields or particles crossing the horizon could be

realized within the context of quantum field theory in a fixed spacetime background. Our

emission rate in the Rindler coordinate has advantageous points: it resolves the controversy

of coordinate-dependence of emission rate and the instanton action for the emission rate is

indeed invariant under canonical transformations. A caveat, however, is that our formula

cannot be applied to extremal black holes since they do not have Rindler coordinates near

horizons.
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